Parameter estimation of the exponentially damped sinusoids signal using a specific neural network

نویسندگان

  • Xiuchun Xiao
  • Jian-Huang Lai
  • Chang-Dong Wang
چکیده

The problem of estimating the parameters of exponentially damped sinusoids (EDSs) signal has received very much attention in many fields. In this paper, a specific neural network termed EDSNN for parameter estimation of the EDSs has been proposed. Aiming at effectively evaluating the parameters of the EDSs signal, we construct a specific topology of EDSNN strictly following the mathematic formulation of EDSs signal. Then, what should be further done is how to train EDSNN using the data-set sampled from the EDSs signal. For this purpose, a modified Levenberg–Marquardt algorithm is derived for iteratively solving the weights of EDSNN by optimizing the pre-defined objective function. Profiting from good performance in fault tolerance of neural network, the proposed algorithm possesses a good performance in resistance to noise. Several computer simulations have been conducted to apply this method to some EDSs signal models. The results substantiate that the proposed EDSNN can synchronously obtain a higher precision for the damped factors, frequencies, also amplitudes and initial phases of all the EDSs than the state-of-the-art algorithm for noise free or noise case. & 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial neural network approach for parameter esti- mation of exponentially damped sinusoids using linear prediction

The paper presents a neural net-based scheme embodying linear prediction techniques and the SVD algorithm to estimate the parameters of exponentially damped sinusoids satisfactorily under low SNR conditions. In the method proposed, a three-layer feed-forward neural network is employed at the output of the SVD block for suppressing bias in the estimated singular values due to the presence of noi...

متن کامل

A New Windowing Method for the Parameter Estimation of Damped Sinusoids

This paper presents a preprocessing technique based on exponential windowing (EW) for parameter estimation of superimposed exponentially damped sinusoids. It is shown that the EW technique significantly improves the robustness to noise over two other commonly used preprocessing techniques: subspace decomposition and higher order statistics. An ad-hoc but efficient approach for the EW parameter ...

متن کامل

Estimating the Parameters of Exponentially Damped Sinusoids an . d Pole ' - Zero Modeling in Noise

ARtract-We have presented techniques [ 11 [ 6 ] based on linear prediction (LP) and singular value decomposition (SVD) for accurate estimation of closely spaced frequencies of sinusoidal signals in noise. In this note we extend these techniques to estimate the parameters of exponentially damped sinusoidal signals in noise. The estimation procedure presented here makes use of "backward predictio...

متن کامل

Signal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).

In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...

متن کامل

Calculation of an entropy-constrained quantizer for exponentially damped sinudoids parameters

The Exponentially Damped Sinusoids (EDS) model can efficiently represent real-world audio signals. In the context of low bit rate parametric audio coding, the EDS model could bring a significant improvement over classical sinusoidal models. The inclusion of an additional damping parameter calls for a specific quantization scheme. In this report, we describe a new jointscalar quantization scheme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2014